Wednesday, September 14, 2016

Disrupted Terrain at the Antipodes of Young Great Basins

A new study of areas diametrically opposite from the Moon's youngest basins goes beyond crustal magnetic fields and swirl albedo features found at these focal points and proposes examples of highly modified terrain. Animation from preliminary lunar crust thickness maps prepared from GRAIL (2012) data by the Science Visualization Studio. [NASA/GSFC].
Joel Raupe
Lunar Pioneer

Studying the lunar magnetic anomalies and albedo swirls nested near the antipodes, at those points that are absolute opposite on the Moon from its youngest basins, can be a little disorienting. The antipodes of the two most familiar nearside basins Mare Imbrium and Mare Serenitatis, for example, are also near the mountainous northwest and northern border region of the vast (and more ancient) South Pole-Aitken (SPA) basin.

Such simple facts as these, derived during the relatively short history of modern lunar exploration, camouflage a variety of unknowns and complexities, as well as some controversy over the origin of the peculiar features discovered there.

Within ten degrees of the farside coordinates diametrically opposite from the officially designated center of Mare Imbrium, close to the surface, is a fairly well-known local magnetic field. Associated with this crustal magnetism is one of the Moon's most familiar tracings of delicate and bright albedo "swirls," apparently composed of a very thin layer of fine dust of the sort of low optical maturity, a signature of the Moon's youngest features draped over its oldest.

Like some kind of alien graffiti, these swirls really stand out as attributes of Mare Ingenii, the largest lava-flooded plain on the farside, a hemisphere almost as devoid of "seas" as the Moon's Earth-facing side is covered by them.

The Ingenii swirl fields are a highlight of anyone's tour of the Moon. To start considering these giant swirls traced over the surface of Ingenii as integral to Mare Imbrium on the Moon's nearside can sometimes seem like reading through a mirror.

Mare Imbrium is probably the most easily detected 'naked-eye feature' of the tidally-bound Earth-facing hemisphere. Centered officially by the IAU at 34.72°N, 345.09°E, the corresponding, though still preliminary, antipode for the Imbrium basin should be near 34.72°S,165.09°E, on the farside's southern hemisphere.

The antipode of Mare Imbrium (yellow spot) was a foci of conjoining seismic shock and ejecta from the epoch-changing basin-forming impact that hollowed out Mare Imbrium, roughly 3.85 billion years ago. Persistent bright surface markings that have lasted beyond the 800 million to 1 billion years thought to inevitably darken lunar regolith are thought to be the result of a cyclical interaction of charged lunar dust precipitating through the locally intense magnetic field. The white rectangle outlines one of many areas of disrupted terrain, "material of grooves and mounds" identified on the geological map of Stuart-Alexander (1978). LROC Wide Angle Camera (WAC) monochrome mosaic [NASA/GSFC/Arizona State University].
When we think of the clusters of features often found together near these points directly opposite from the Moon's nearside basins it's often easier to label Mare Ingenii as Imbrium Antipode, and the Gerasimovich region as Crisium Antipode, etc.

This unconventional labeling emerges as we study a whole family of, literally, "far-flung phenomena," though most of the species, fortunately, are not yet associated with a local name. Unlike the more easily spotted features at Mare Ingenii, now thought to have originated with Mare Imbrium, such features elsewhere are less easily picked out, overlapping widely differing terrains and a variety of mountain ranges, plains and crater groups.

A very distinctive bifurcated swirl, one of many similar, striking aspects of Mare Ingenii, on the Moon's farside and immediately adjacent to the antipode of Mare Imbrium. From an oblique LROC NAC observation M191830503R, LRO orbit 13304, May 16, 2012 [NASA/GSFC/Arizona State University].
The point on the Moon opposite Mare Serenitatis is not as distinctive (see image below). The coordinates were easy enough to determine, like the Imbrium Antipode it's just inside the circumference of SPA basin, a little north and east the antipode of Imbrium as Serenitatis basin, on the nearside, is a little south and east of Imbrium.

Like most of the farside, however, there is no mare-inundated plain near the Serenitatis antipode to allow for a clear photographic contrast with local differences in albedo. The crustal magnetism (or the granularity of our data) seems more diffuse, with smaller, less intense knots of crust magnetism.

The absence on the Moon of the kind of global magnetic field that affords life so much welcome protection here on Earth was one of the earliest conclusions of modern lunar exploration. As men and machines transited to and from the surface, however, the magnetic picture became more complex. The earliest magnetometers, in orbit and on the surface, were detecting magnetic signatures bound to local features, but their local intensity and apparent close association of with surfaces that seemed to defy aging were only beginning to be grasped.

The Serenitatis Antipode is not as easy for the naked eye to pick out from the background as points opposite the Imbrium basin associated with Mare Ingenii. The antipode of Serenitatis is marked with a cross in frame one (Figure 5 from the study by Hood, et al (2013). In that same frame the authors draw attention to mountains along the rim of SPA basin (white arrows) as possible examples of terrain disrupted by the Serenitatis basin-forming impact here near the opposite point on the Moon. The frame following draws attention to two anomalous optically immature surface areas within Galois Q crater, followed by Clementine color ratio analysis where the older terrain (red) surface areas stand out with characteristics of new (blue) and reflective regolith fines. The twin patches coincide with a local magnetic field strength "bump" measuring 9nT. The final frame shows the same albedo patches at 77 meters resolution in LROC Wide Angle Camera (WAC) observation M160959807C (604 nm), spacecraft orbit 8854, May 25, 2011, angle of incidence 62° from 60 km [NASA/USGS/DOD/GSFC/Arizona State University].
As the Apollo era came to an end it was understood, at least, that the Moon seemed once to have had an internal dynamo like Earth, generating global magnetism fossilized today in its rocks. A higher resolution picture of the Moon's magnetism and its interrelation with the Sun, Earth and its own dust would wait for a second very slowly renewed period of unmanned exploration beginning with vehicles like the DOD remote sensing test platform Clementine (1994).

At the close of the 20th century the remarkable Lunar Prospector (1998-1999) helped add important pieces to the picture. Specifically, the small vehicle returned highly valued data on the Moon's local magnetic fields very close to the surface, as it was gradually lowered toward a planned impact within the permanently shadowed Shoemaker crater, a feature of the far lunar south today baring the name of the celebrated pioneer Gene Shoemaker (1928-1997) who originally planned the impact that inspired the LCROSS mission ten years later.

Investigators have continued to correct and tease valuable information from the sparse Lunar Prospector magnetometer data to this day. The data sometimes allowed identifying lunar features in a manner opposite than before. Reiner Gamma, the most familiar swirl phenomena in Oceanus Procellarum, stands out in low power telescopes. Its associated crustal magnetism was identified later. Elsewhere on the nearside magnetometer data from as few as one to three late mission low orbital passes by Lunar Prospector allowed diffuse albedo patches at Airy and Descartes to be definitively associated with locally intense crustal magnetism and identified as true "swirl phenomena."

Figure 9 from Hood, et al (2013) - Superposition of the two-dimensionally filtered magnetic field magnitude at approximately 25 km altitude (Lunar Prospector), contour interval 1 nano-Tesla, onto LROC WAC mosaic of the nearside, in the south-central highlands vicinity of the Apollo 16 landing site.
Simulated oblique view over ancient Descartes crater (29 km - 11.74°S, 15.66°E), from the Cayley Formation plains explored by Young and Duke on the Apollo 16 expedition (1972) in the northwest around 80 km southeast over the "disrupted terrain" of the Descartes Formation, highlighting its anomalous albedo, not coincidentally at the heart of one of the Moon's most intense crustal magnetic fields. LROC WAC mosaic, from observations collected in three sequential orbital passes December 3, 2011, averaging 52 meters resolution from 38 km - Figure 5 from "Boulder 668 at Descartes C," July 17, 2012 [NASA/GSFC/Arizona State University].
At Orientale Antipode, opposite from what is the Moon's unequivocally youngest basin, the swirl field is very widespread, associated with more than a few peaks in local crustal magnetism. The largest affected feature on the opposite side of the Moon from Mare Orientale is Mare Marginis, characterized by what is likely the Moon's largest and most complex field of swirls at the surface, overlapping every kind of terrain, but also closely identified with the Goddard and Goddard A crater. Still, the actual boundaries of this field of 'persistent albedo patterns' are difficult to trace.

Adding to this complexity, the swirl field near Orientale Antipode has been affected by relatively recent impacts, some with brightly reflective rays. The field is spread far enough east, extending over the farside's mid-latitudes, it's difficult to say with certainty whether an unnamed, tightly wound spectacular swirl field east of Firsov crater belongs to the group.

The Orientale Antipode (near Goddard A) is characterized by very widespread swirls. The greater manifestation (large oval) extends far from the pronounced magnetic field lines of peak strength near Hubble, Goddard and Goddard A craters east nearly to a distant and weaker peak field strength associated with the spectacular field of swirls seemingly spilling out from a bright unnamed Copernican crater east of Firsov (4.204°N, 112.697°E). LROC WAC global 100 meter mosaic [NASA/GSFC/Arizona State University].
Three investigators with established planetary science resumes which include (among many other things) peer-reviewed study of these bright swirl 'patterns' and associated lunar magnetic anomalies, have recently authored a new study building on continued fine-tuning of Lunar Prospector (1998-1999) magnetometer data and the more recent Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) surveys.

The new paper, published in the Journal of Geophysical Research, “Origin of Strong Lunar Magnetic Anomalies: More Detailed Mapping and Examination of LROC Imagery in Regions Antipodal to Young Large Basins,” demonstrates further the recent end to a long controversy, helping answer the Space Age mystery posed by the Moon’s delicate, bright, often sinuous surface albedo patterns.

A crew member on-board Apollo 10 almost managed to capture the full length of the magnificent but unnamed surficial albedo swirl field now associated with a measurable peak in crustal magnetism east of Firsov crater. AS10-30-4365 [NASA].
As with most controversies on the long climb of science, a quiet resolution drew upon bits and pieces collected in pursuit of answers to many, often unrelated, questions.

Launched in early 1998, Lunar Prospector spent 19 months in a low polar orbit and became notorious for a remarkably low budget and high return of valued data as much as for improved mapping of the scattered neutron absorption strongly hinting at the presence of volatiles, specifically hydrogen, prematurely ruled out following early analysis of Apollo samples in 1969.

In 2013 terms, for the amount of money the federal government collects, borrows and spends every eight and a half minutes Lunar Prospector gained a well-deserved reputation and confirmed still skeptically-received indications of the presence of hydrogen, both inside and outside the permanently shadowed regions of the Moon’s polar latitudes.
“Will your grace command me any service to the world's end?  I will go on the slightest errand now, to the Antipodes that you can devise to send me on…”
- Much Ado About Nothing, (Act II, scene 2)
The planned mission-ending impact of Lunar Prospector on the permanently shadowed floor of Shoemaker crater, near the Moon’s South Pole, July 30, 1999 (a long-shot, ultimately unsuccessful attempt to send up a plume of volatiles detectable from Earth), inspired the very successful LCROSS mission, launched together with LRO, a decade later.

With its neutron spectrometer, mapping the absence, the absorption, of scattered neutrons indicative of hydrogen, possibly water ices, near the lunar poles, Lunar Prospector also deployed a sensitive magnetometer.

The Moon’s lack of an Earth-like global magnetic field was well known, though Apollo and Luna surface samples clearly indicated the Moon may once have had the kind of molten internal dynamo at its core we take for granted on Earth, a now-dormant generator sufficient for global magnetism, its signature locked into the lineup direction of certain materials as volcanic rock cooled in its earliest ages, some of these as much as a billion years apart. The magnetic fields detected at the surface and from orbit, speculation held, were likely fossilized remnants, surviving islands – though the presence of “lunar magnetic anomalies” on the Moon’s Farside, in concentrations near opposite on the Moon (antipodal) from the Nearside’s large basins was seen as an unlikely coincidence very early in post-Apollo studies.

Along with anomalous local crustal magnetism detected near the Moon’s most famous “swirl,” the alluring Reiner Gamma, bright against the darker background of Oceans Procellarum, and the presence of swirls, some of them spectacular, in vicinity of these islands of knotted magnetic field lines - at the antipodes of Mare Imbrium and Serenitatis - was impossible to ignore.

Very near the Antipodes of Mare Imbrium in particular, the earliest photographs of the Moon’s Farside unveiled a spectacular swirl “field,” seeming almost intelligent in origin, Minimalist butterflies or spiders, strange forms seemed lightly painted in white on the darker floor of the melt-inundated basin floor of Mare Ingenii, by some inscrutable giant almost evoking the walls and ceilings of the cave of Lascaux, or the Nazca Lines.

“Swirls” seem immune from “optical maturity,” an inevitable darkening (really reddening) by solar and cosmic radiation. Incessant bombardment should inevitably weather fade such contrast to match its surroundings, on a timescale between 800 million to 1 billion years.

Had there had been any indication the bright patterns were composed of rough, fresh and reflectively bright small ejecta, like the rays of young 109 million year old Tycho, for example, a predictable cycle of meteorite and micro-meteorite “gardening” turns over the upper 3 centimeters of the entire lunar surface each two million years. Space weather, therefore, should have contributed to their erasure. It was a strong argument for direct, or lacking any difference in the crater counts inside and outside the swirls, indirect encounters with comets.

The comet encounter theory for the origin of lunar swirls died hard. Proponents pointed to the optical immaturity, the undeniably fresh material of the brighter surface, and claimed this to be evidence that outweighed other factors.

The predominance of Farside swirls gathered near places opposite from the Nearside basins and in the presence of coincident local crustal magnetism, they wrote, pointed perhaps to relatively recent and oblique encounters with comets interacting electro-chemically with these unusual conditions. The still-interesting fact that Reiner Gamma, and two lesser known magnetic anomalies with accompanying bright albedo patches on the Nearside seemed to lack any identified basins at their opposing antipodes on the Farside, they claimed, was also exceptional.

As the recorded readings measured from the Lunar Prospector magnetometer were gradually corrected, properly matched with time, the pressures of sunlight, etc., over many years following the end of that mission in 1999, researchers began discovering, or confirming, the existence of swirls after first deciphering the location of smaller, though sometimes intense, magnetic fields.

Ironically, the most intense magnetic field detected by any of the Apollo surface expeditions, that of Apollo 16, was measured only 80 km northwest of possibly the most intense crustal magnetism on the Moon, together with the amorphous small brighter surface material of the Descartes Formation. John Young and Charlie Duke walked on the northwestern edge of this feature when sampling the Cinco craters on “Stone Mountain,” overlooking South Ray crater, in April 1972.

The Lunar Prospector magnetometer survey of the Moon made for an improvement on earlier maps, but the mission was not comprehensive. Its advantage, at the time, was an unprecedented low orbit, an orbital altitude gradually lowering more and more as the vehicle approached its demise. The data had an inherent high degree of accuracy because of improvements in electronics and hardened electronics since the Apollo era, and a value-added accuracy due to the patience and hard work of investigators properly pegging the to geography and time, in filtering out the noise long after Lunar Prospector was gone.

Much of what is now known about the lunar magnetic anomaly on the Descartes highland hugging the northern edge of ancient Descartes crater, was teased from its measurements taken through three late mission orbits, when Lunar Prospector orbited some 32 km first over the east, and in the next orbit passing directly over Descartes, and last over the west.

Hood and Richmond, authors of this latest study, published their examination of the Lunar Prospector encounter with Descartes in 2003, determining the intensity of the very local magnetic field sufficient to refract the solar wind, dubbing it a “mini-magnetosphere.”

At nearly the same time, similarly strong local magnetic anomalies, though slightly less intense and localized, were shown embedded on the Farside at Gerasimovich, and perhaps elsewhere.

Some were quick to speculate, if a crustal magnetism centered on the Descartes formation were strong enough to refract the solar wind, perhaps such protection prevented the dusty surface of the bright “swirl” on the southern half of “Stone Mountain” from becoming “optically mature.”

The authors were quick to point out in their introductory paper even such an obviously intense local magnetic field offered no protections from heavier cosmic radiation. The depth of the cavity in the solar wind formed by Descartes magnetic anomaly was insufficient to stop highly energetic, and heavy, nucleons traveling – unlike the particles of a solar wind – close to the speed of light. They estimated such a purpose would require a magnetic field 2,000 km across just to begin deflecting highly energetic cosmic rays away from the surface within the fields. Naturally, such a field would have no effect on the patient and steady rain of micro-meteorites adding to the surface maturity.

Ignoring, for the moment, most magnetic anomalies with their attendant swirls are not sufficiently intense to carve out a transitory cavity in the solar wind, the authors demonstrated the most astonishingly enduring, and intense magnetic field ever detected near the lunar surface was no protection from space weathering.

By all rights, the surfaces within their influence should be darkening at or close to the same rate as the lunar surface elsewhere.

Enter Kaguya, Chandrayaan, LRO…

Toppography.

For decades the nature and the origin or the swirl patterns stirred very minor controversy, in planetary science communities. Those who insisted lunar swirls originated from comet encounters

Early in the Space Age investigators concluded our Moon, unlike Earth,

One place suggested as a possible location for samples of the SPA basin is northeast of Plato, where, between that famous crater and the long northern edge of Mare Frigoris, probability points toward the possible existence of a debris pile, the antipodes of the South Pole-Aitken basin.

In this latest study, Hood, Richmond and Spudis add granularity to our understanding the relationship between basin forming impacts and how they modify the landscape at the most remote points possible, as far away from Ground Zero as anyone can get, and remain on the Moon.

Anyone can meditate on Mare Imbrium, for example, and see how energetic the pressure wave, racing away from the center of the impact, scoured out mountains and channels and hurled away and dumped unimaginable masses of melt and solid debris many hundreds of kilometers away. The scar has not been erased, and a significant amount of debris must have been ejected at escape velocity. Much of that material eventually returned or settled elsewhere in the Solar System.

On February 15, 2013, as many in the far-flung world’s astronomy community were preparing to observe an exceptionally close fly-by of asteroid 2012 DA14, out of the glare of the pre-dawn over Central Asia a 7,000 ton, 15 meter-wide rock encountered Earth’s atmosphere at a relative speed of 18 km per second. Immediately flaring bright, it quickly exploded 20 km overhead. The event produced a shockwave into the atmosphere over Chelyabinsk that immediately imparted ten times the energy of the fission bomb exploded over Hiroshima in 1945. The sound of that smaller asteroid’s explosion traveled around the entire planet several times before seismic stations of the world could detect it no longer.

The pressure wave from the Chelyabinsk Event propagated in every direction away from the explosion until all points on the wave converged west-southwest of South America, where the far South Pacific borders the Great Southern Ocean encircling Antarctica. The momentum of the wave through the atmosphere carried past this convergence point, the Antipode of the Chelyabinsk Event, and continued racing away until a second convergence occurred many hours later, back over Russia, where the energy continued on toward the antipode a second time, and so on, like ripples in a pond – only the pond, in this case, was a planet, and its shoreline a single point on the opposite side of the world.


Related Posts:
Bubble, Bubble – Swirl and Trouble (July 19, 2012)
Boulder 668 at Descartes C (July 16, 2012)
LROC: The Swirls of Mare Ingenii (June 22, 2012)
Remnant magnetism hints at once-active lunar core (January 27, 2012)
Grand lunar swirls yielding to LRO Mini-RF (October 4, 2010)
Another look at Reiner Gamma (June 30, 2010)
LOLA: Goddard (June 26, 2010)
Depths of Mare Ingenii (June 16, 2010)
LROC: Ingenii Swirls at Constellation Region of Interest (May 26, 2010)
Local topography and Reiner Gamma (May 22, 2010)
Lunar swirl phenomena from LRO (May 17, 2010)
The still-mysterious Descartes formation (May 11, 2010)
Dust transport and its importance in the origin of lunar swirls (February 21, 2010)
The Heart of Reiner Gamma (November 17, 2009)
Moon’s mini-magnetospheres are old news (November 16, 2009)
MIT claim of solving ‘lunar mystery’ unfounded (January 15, 2009)

Disrupted Terrain at the Antipodes of Young Great Basins

A new study of areas diametrically opposite from the Moon's youngest basins goes beyond crustal magnetic fields and swirl albedo features found at these focal points and proposes examples of highly modified terrain. Animation from preliminary lunar crust thickness maps prepared from GRAIL (2012) data by the Science Visualization Studio. [NASA/GSFC].
Joel Raupe
Lunar Pioneer

Studying the lunar magnetic anomalies and albedo swirls nested near the antipodes, at those points that are absolute opposite on the Moon from its youngest basins, can be a little disorienting. The antipodes of the two most familiar nearside basins Mare Imbrium and Mare Serenitatis, for example, are also near the mountainous northwest and northern border region of the vast (and more ancient) South Pole-Aitken (SPA) basin.

Such simple facts as these, derived during the relatively short history of modern lunar exploration, camouflage a variety of unknowns and complexities, as well as some controversy over the origin of the peculiar features discovered there.

Within ten degrees of the farside coordinates diametrically opposite from the officially designated center of Mare Imbrium, close to the surface, is a fairly well-known local magnetic field. Associated with this crustal magnetism is one of the Moon's most familiar tracings of delicate and bright albedo "swirls," apparently composed of a very thin layer of fine dust of the sort of low optical maturity, a signature of the Moon's youngest features draped over its oldest.

Like some kind of alien graffiti, these swirls really stand out as attributes of Mare Ingenii, the largest lava-flooded plain on the farside, a hemisphere almost as devoid of "seas" as the Moon's Earth-facing side is covered by them.

The Ingenii swirl fields are a highlight of anyone's tour of the Moon. To start considering these giant swirls traced over the surface of Ingenii as integral to Mare Imbrium on the Moon's nearside can sometimes seem like reading through a mirror.

Mare Imbrium is probably the most easily detected 'naked-eye feature' of the tidally-bound Earth-facing hemisphere. Centered officially by the IAU at 34.72°N, 345.09°E, the corresponding, though still preliminary, antipode for the Imbrium basin should be near 34.72°S,165.09°E, on the farside's southern hemisphere.

The antipode of Mare Imbrium (yellow spot) was a foci of conjoining seismic shock and ejecta from the epoch-changing basin-forming impact that hollowed out Mare Imbrium, roughly 3.85 billion years ago. Persistent bright surface markings that have lasted beyond the 800 million to 1 billion years thought to inevitably darken lunar regolith are thought to be the result of a cyclical interaction of charged lunar dust precipitating through the locally intense magnetic field. The white rectangle outlines one of many areas of disrupted terrain, "material of grooves and mounds" identified on the geological map of Stuart-Alexander (1978). LROC Wide Angle Camera (WAC) monochrome mosaic [NASA/GSFC/Arizona State University].
When we think of the clusters of features often found together near these points directly opposite from the Moon's nearside basins it's often easier to label Mare Ingenii as Imbrium Antipode, and the Gerasimovich region as Crisium Antipode, etc.

This unconventional labeling emerges as we study a whole family of, literally, "far-flung phenomena," though most of the species, fortunately, are not yet associated with a local name. Unlike the more easily spotted features at Mare Ingenii, now thought to have originated with Mare Imbrium, such features elsewhere are less easily picked out, overlapping widely differing terrains and a variety of mountain ranges, plains and crater groups.

A very distinctive bifurcated swirl, one of many similar, striking aspects of Mare Ingenii, on the Moon's farside and immediately adjacent to the antipode of Mare Imbrium. From an oblique LROC NAC observation M191830503R, LRO orbit 13304, May 16, 2012 [NASA/GSFC/Arizona State University].
The point on the Moon opposite Mare Serenitatis is not as distinctive (see image below). The coordinates were easy enough to determine, like the Imbrium Antipode it's just inside the circumference of SPA basin, a little north and east the antipode of Imbrium as Serenitatis basin, on the nearside, is a little south and east of Imbrium.

Like most of the farside, however, there is no mare-inundated plain near the Serenitatis antipode to allow for a clear photographic contrast with local differences in albedo. The crustal magnetism (or the granularity of our data) seems more diffuse, with smaller, less intense knots of crust magnetism.

The absence on the Moon of the kind of global magnetic field that affords life so much welcome protection here on Earth was one of the earliest conclusions of modern lunar exploration. As men and machines transited to and from the surface, however, the magnetic picture became more complex. The earliest magnetometers, in orbit and on the surface, were detecting magnetic signatures bound to local features, but their local intensity and apparent close association of with surfaces that seemed to defy aging were only beginning to be grasped.

The Serenitatis Antipode is not as easy for the naked eye to pick out from the background as points opposite the Imbrium basin associated with Mare Ingenii. The antipode of Serenitatis is marked with a cross in frame one (Figure 5 from the study by Hood, et al (2013). In that same frame the authors draw attention to mountains along the rim of SPA basin (white arrows) as possible examples of terrain disrupted by the Serenitatis basin-forming impact here near the opposite point on the Moon. The frame following draws attention to two anomalous optically immature surface areas within Galois Q crater, followed by Clementine color ratio analysis where the older terrain (red) surface areas stand out with characteristics of new (blue) and reflective regolith fines. The twin patches coincide with a local magnetic field strength "bump" measuring 9nT. The final frame shows the same albedo patches at 77 meters resolution in LROC Wide Angle Camera (WAC) observation M160959807C (604 nm), spacecraft orbit 8854, May 25, 2011, angle of incidence 62° from 60 km [NASA/USGS/DOD/GSFC/Arizona State University].
As the Apollo era came to an end it was understood, at least, that the Moon seemed once to have had an internal dynamo like Earth, generating global magnetism fossilized today in its rocks. A higher resolution picture of the Moon's magnetism and its interrelation with the Sun, Earth and its own dust would wait for a second very slowly renewed period of unmanned exploration beginning with vehicles like the DOD remote sensing test platform Clementine (1994).

At the close of the 20th century the remarkable Lunar Prospector (1998-1999) helped add important pieces to the picture. Specifically, the small vehicle returned highly valued data on the Moon's local magnetic fields very close to the surface, as it was gradually lowered toward a planned impact within the permanently shadowed Shoemaker crater, a feature of the far lunar south today baring the name of the celebrated pioneer Gene Shoemaker (1928-1997) who originally planned the impact that inspired the LCROSS mission ten years later.

Investigators have continued to correct and tease valuable information from the sparse Lunar Prospector magnetometer data to this day. The data sometimes allowed identifying lunar features in a manner opposite than before. Reiner Gamma, the most familiar swirl phenomena in Oceanus Procellarum, stands out in low power telescopes. Its associated crustal magnetism was identified later. Elsewhere on the nearside magnetometer data from as few as one to three late mission low orbital passes by Lunar Prospector allowed diffuse albedo patches at Airy and Descartes to be definitively associated with locally intense crustal magnetism and identified as true "swirl phenomena."

Figure 9 from Hood, et al (2013) - Superposition of the two-dimensionally filtered magnetic field magnitude at approximately 25 km altitude (Lunar Prospector), contour interval 1 nano-Tesla, onto LROC WAC mosaic of the nearside, in the south-central highlands vicinity of the Apollo 16 landing site.
Simulated oblique view over ancient Descartes crater (29 km - 11.74°S, 15.66°E), from the Cayley Formation plains explored by Young and Duke on the Apollo 16 expedition (1972) in the northwest around 80 km southeast over the "disrupted terrain" of the Descartes Formation, highlighting its anomalous albedo, not coincidentally at the heart of one of the Moon's most intense crustal magnetic fields. LROC WAC mosaic, from observations collected in three sequential orbital passes December 3, 2011, averaging 52 meters resolution from 38 km - Figure 5 from "Boulder 668 at Descartes C," July 17, 2012 [NASA/GSFC/Arizona State University].
At Orientale Antipode, opposite from what is the Moon's unequivocally youngest basin, the swirl field is very widespread, associated with more than a few peaks in local crustal magnetism. The largest affected feature on the opposite side of the Moon from Mare Orientale is Mare Marginis, characterized by what is likely the Moon's largest and most complex field of swirls at the surface, overlapping every kind of terrain, but also closely identified with the Goddard and Goddard A crater. Still, the actual boundaries of this field of 'persistent albedo patterns' are difficult to trace.

Adding to this complexity, the swirl field near Orientale Antipode has been affected by relatively recent impacts, some with brightly reflective rays. The field is spread far enough east, extending over the farside's mid-latitudes, it's difficult to say with certainty whether an unnamed, tightly wound spectacular swirl field east of Firsov crater belongs to the group.

The Orientale Antipode (near Goddard A) is characterized by very widespread swirls. The greater manifestation (large oval) extends far from the pronounced magnetic field lines of peak strength near Hubble, Goddard and Goddard A craters east nearly to a distant and weaker peak field strength associated with the spectacular field of swirls seemingly spilling out from a bright unnamed Copernican crater east of Firsov (4.204°N, 112.697°E). LROC WAC global 100 meter mosaic [NASA/GSFC/Arizona State University].
Three investigators with established planetary science resumes which include (among many other things) peer-reviewed study of these bright swirl 'patterns' and associated lunar magnetic anomalies, have recently authored a new study building on continued fine-tuning of Lunar Prospector (1998-1999) magnetometer data and the more recent Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) surveys.

The new paper, published in the Journal of Geophysical Research, “Origin of Strong Lunar Magnetic Anomalies: More Detailed Mapping and Examination of LROC Imagery in Regions Antipodal to Young Large Basins,” demonstrates further the recent end to a long controversy, helping answer the Space Age mystery posed by the Moon’s delicate, bright, often sinuous surface albedo patterns.

A crew member on-board Apollo 10 almost managed to capture the full length of the magnificent but unnamed surficial albedo swirl field now associated with a measurable peak in crustal magnetism east of Firsov crater. AS10-30-4365 [NASA].
As with most controversies on the long climb of science, a quiet resolution drew upon bits and pieces collected in pursuit of answers to many, often unrelated, questions.

Launched in early 1998, Lunar Prospector spent 19 months in a low polar orbit and became notorious for a remarkably low budget and high return of valued data as much as for improved mapping of the scattered neutron absorption strongly hinting at the presence of volatiles, specifically hydrogen, prematurely ruled out following early analysis of Apollo samples in 1969.

In 2013 terms, for the amount of money the federal government collects, borrows and spends every eight and a half minutes Lunar Prospector gained a well-deserved reputation and confirmed still skeptically-received indications of the presence of hydrogen, both inside and outside the permanently shadowed regions of the Moon’s polar latitudes.
“Will your grace command me any service to the world's end?  I will go on the slightest errand now, to the Antipodes that you can devise to send me on…”
- Much Ado About Nothing, (Act II, scene 2)
The planned mission-ending impact of Lunar Prospector on the permanently shadowed floor of Shoemaker crater, near the Moon’s South Pole, July 30, 1999 (a long-shot, ultimately unsuccessful attempt to send up a plume of volatiles detectable from Earth), inspired the very successful LCROSS mission, launched together with LRO, a decade later.

With its neutron spectrometer, mapping the absence, the absorption, of scattered neutrons indicative of hydrogen, possibly water ices, near the lunar poles, Lunar Prospector also deployed a sensitive magnetometer.

The Moon’s lack of an Earth-like global magnetic field was well known, though Apollo and Luna surface samples clearly indicated the Moon may once have had the kind of molten internal dynamo at its core we take for granted on Earth, a now-dormant generator sufficient for global magnetism, its signature locked into the lineup direction of certain materials as volcanic rock cooled in its earliest ages, some of these as much as a billion years apart. The magnetic fields detected at the surface and from orbit, speculation held, were likely fossilized remnants, surviving islands – though the presence of “lunar magnetic anomalies” on the Moon’s Farside, in concentrations near opposite on the Moon (antipodal) from the Nearside’s large basins was seen as an unlikely coincidence very early in post-Apollo studies.

Along with anomalous local crustal magnetism detected near the Moon’s most famous “swirl,” the alluring Reiner Gamma, bright against the darker background of Oceans Procellarum, and the presence of swirls, some of them spectacular, in vicinity of these islands of knotted magnetic field lines - at the antipodes of Mare Imbrium and Serenitatis - was impossible to ignore.

Very near the Antipodes of Mare Imbrium in particular, the earliest photographs of the Moon’s Farside unveiled a spectacular swirl “field,” seeming almost intelligent in origin, Minimalist butterflies or spiders, strange forms seemed lightly painted in white on the darker floor of the melt-inundated basin floor of Mare Ingenii, by some inscrutable giant almost evoking the walls and ceilings of the cave of Lascaux, or the Nazca Lines.

“Swirls” seem immune from “optical maturity,” an inevitable darkening (really reddening) by solar and cosmic radiation. Incessant bombardment should inevitably weather fade such contrast to match its surroundings, on a timescale between 800 million to 1 billion years.

Had there had been any indication the bright patterns were composed of rough, fresh and reflectively bright small ejecta, like the rays of young 109 million year old Tycho, for example, a predictable cycle of meteorite and micro-meteorite “gardening” turns over the upper 3 centimeters of the entire lunar surface each two million years. Space weather, therefore, should have contributed to their erasure. It was a strong argument for direct, or lacking any difference in the crater counts inside and outside the swirls, indirect encounters with comets.

The comet encounter theory for the origin of lunar swirls died hard. Proponents pointed to the optical immaturity, the undeniably fresh material of the brighter surface, and claimed this to be evidence that outweighed other factors.

The predominance of Farside swirls gathered near places opposite from the Nearside basins and in the presence of coincident local crustal magnetism, they wrote, pointed perhaps to relatively recent and oblique encounters with comets interacting electro-chemically with these unusual conditions. The still-interesting fact that Reiner Gamma, and two lesser known magnetic anomalies with accompanying bright albedo patches on the Nearside seemed to lack any identified basins at their opposing antipodes on the Farside, they claimed, was also exceptional.

As the recorded readings measured from the Lunar Prospector magnetometer were gradually corrected, properly matched with time, the pressures of sunlight, etc., over many years following the end of that mission in 1999, researchers began discovering, or confirming, the existence of swirls after first deciphering the location of smaller, though sometimes intense, magnetic fields.

Ironically, the most intense magnetic field detected by any of the Apollo surface expeditions, that of Apollo 16, was measured only 80 km northwest of possibly the most intense crustal magnetism on the Moon, together with the amorphous small brighter surface material of the Descartes Formation. John Young and Charlie Duke walked on the northwestern edge of this feature when sampling the Cinco craters on “Stone Mountain,” overlooking South Ray crater, in April 1972.

The Lunar Prospector magnetometer survey of the Moon made for an improvement on earlier maps, but the mission was not comprehensive. Its advantage, at the time, was an unprecedented low orbit, an orbital altitude gradually lowering more and more as the vehicle approached its demise. The data had an inherent high degree of accuracy because of improvements in electronics and hardened electronics since the Apollo era, and a value-added accuracy due to the patience and hard work of investigators properly pegging the to geography and time, in filtering out the noise long after Lunar Prospector was gone.

Much of what is now known about the lunar magnetic anomaly on the Descartes highland hugging the northern edge of ancient Descartes crater, was teased from its measurements taken through three late mission orbits, when Lunar Prospector orbited some 32 km first over the east, and in the next orbit passing directly over Descartes, and last over the west.

Hood and Richmond, authors of this latest study, published their examination of the Lunar Prospector encounter with Descartes in 2003, determining the intensity of the very local magnetic field sufficient to refract the solar wind, dubbing it a “mini-magnetosphere.”

At nearly the same time, similarly strong local magnetic anomalies, though slightly less intense and localized, were shown embedded on the Farside at Gerasimovich, and perhaps elsewhere.

Some were quick to speculate, if a crustal magnetism centered on the Descartes formation were strong enough to refract the solar wind, perhaps such protection prevented the dusty surface of the bright “swirl” on the southern half of “Stone Mountain” from becoming “optically mature.”

The authors were quick to point out in their introductory paper even such an obviously intense local magnetic field offered no protections from heavier cosmic radiation. The depth of the cavity in the solar wind formed by Descartes magnetic anomaly was insufficient to stop highly energetic, and heavy, nucleons traveling – unlike the particles of a solar wind – close to the speed of light. They estimated such a purpose would require a magnetic field 2,000 km across just to begin deflecting highly energetic cosmic rays away from the surface within the fields. Naturally, such a field would have no effect on the patient and steady rain of micro-meteorites adding to the surface maturity.

Ignoring, for the moment, most magnetic anomalies with their attendant swirls are not sufficiently intense to carve out a transitory cavity in the solar wind, the authors demonstrated the most astonishingly enduring, and intense magnetic field ever detected near the lunar surface was no protection from space weathering.

By all rights, the surfaces within their influence should be darkening at or close to the same rate as the lunar surface elsewhere.

Enter Kaguya, Chandrayaan, LRO…

Toppography.

For decades the nature and the origin or the swirl patterns stirred very minor controversy, in planetary science communities. Those who insisted lunar swirls originated from comet encounters

Early in the Space Age investigators concluded our Moon, unlike Earth,

One place suggested as a possible location for samples of the SPA basin is northeast of Plato, where, between that famous crater and the long northern edge of Mare Frigoris, probability points toward the possible existence of a debris pile, the antipodes of the South Pole-Aitken basin.

In this latest study, Hood, Richmond and Spudis add granularity to our understanding the relationship between basin forming impacts and how they modify the landscape at the most remote points possible, as far away from Ground Zero as anyone can get, and remain on the Moon.

Anyone can meditate on Mare Imbrium, for example, and see how energetic the pressure wave, racing away from the center of the impact, scoured out mountains and channels and hurled away and dumped unimaginable masses of melt and solid debris many hundreds of kilometers away. The scar has not been erased, and a significant amount of debris must have been ejected at escape velocity. Much of that material eventually returned or settled elsewhere in the Solar System.

On February 15, 2013, as many in the far-flung world’s astronomy community were preparing to observe an exceptionally close fly-by of asteroid 2012 DA14, out of the glare of the pre-dawn over Central Asia a 7,000 ton, 15 meter-wide rock encountered Earth’s atmosphere at a relative speed of 18 km per second. Immediately flaring bright, it quickly exploded 20 km overhead. The event produced a shockwave into the atmosphere over Chelyabinsk that immediately imparted ten times the energy of the fission bomb exploded over Hiroshima in 1945. The sound of that smaller asteroid’s explosion traveled around the entire planet several times before seismic stations of the world could detect it no longer.

The pressure wave from the Chelyabinsk Event propagated in every direction away from the explosion until all points on the wave converged west-southwest of South America, where the far South Pacific borders the Great Southern Ocean encircling Antarctica. The momentum of the wave through the atmosphere carried past this convergence point, the Antipode of the Chelyabinsk Event, and continued racing away until a second convergence occurred many hours later, back over Russia, where the energy continued on toward the antipode a second time, and so on, like ripples in a pond – only the pond, in this case, was a planet, and its shoreline a single point on the opposite side of the world.


Related Posts:
Bubble, Bubble – Swirl and Trouble (July 19, 2012)
Boulder 668 at Descartes C (July 16, 2012)
LROC: The Swirls of Mare Ingenii (June 22, 2012)
Remnant magnetism hints at once-active lunar core (January 27, 2012)
Grand lunar swirls yielding to LRO Mini-RF (October 4, 2010)
Another look at Reiner Gamma (June 30, 2010)
LOLA: Goddard (June 26, 2010)
Depths of Mare Ingenii (June 16, 2010)
LROC: Ingenii Swirls at Constellation Region of Interest (May 26, 2010)
Local topography and Reiner Gamma (May 22, 2010)
Lunar swirl phenomena from LRO (May 17, 2010)
The still-mysterious Descartes formation (May 11, 2010)
Dust transport and its importance in the origin of lunar swirls (February 21, 2010)
The Heart of Reiner Gamma (November 17, 2009)
Moon’s mini-magnetospheres are old news (November 16, 2009)
MIT claim of solving ‘lunar mystery’ unfounded (January 15, 2009)

Asteroid Mining: the Race for Space Riches

Notional small asteroid retrieval probe [NASA].
David Szondy
NEWATLAS

There's gold in them thar asteroids – also iron, nickel, copper and, most valuable of all, water. According to the proponents of asteroid mining, these space rocks are a virtual El Dorado in the sky with more obtainable minerals in the largest three in our solar system than on the entire Earth. The question is, where exactly is all this mineral wealth and how do you get it without going broke in the process?

There's something of an international race to the asteroids underway at the moment, with countries from the United States to Luxembourg backing missions. On the surface it seems like a two-tier race – NASA and ESA are sending giant spacecraft and even manned missions, while private firms are concentrating on tiny probes that look like scale models. But while these approaches to asteroid exploration are very different, they are far from mutually exclusive.

Before we examine these exploration plans, let's look at the asteroids and why anyone would be interested in spending billions to visit a far flung rock.

View full article and Gallery, HERE.

Wednesday, August 3, 2016

Moon Express licensed for lunar expedition in 2017

Moon Express unique torus bus approaches lunar vicinity in notional representation [Moon Express].
Mike Wall
Senior Writer
Space.com

For the first time ever, a private company has permission to land on the moon.

The U.S. government has officially approved the planned 2017 robotic lunar landing of California-based Moon Express, which aims to fly commercial missions to Earth's nearest neighbor and help exploit its resources, company representatives announced today .

"This is not only a milestone, but really a threshold for the entire commercial space industry," Moon Express co-founder and CEO Bob Richards told Space.com.

Previously, companies had been able to operate only on or around Earth. The new approval, while exclusive to Moon Express, could therefore serve as an important regulatory guide for deep-space commercial activity in general, Richards said.

"Nobody's had a deep-sea voyage yet. We're still charting those waters," he said. "Somebody had to be first."

Moon Express submitted an application to the U.S. Federal Aviation Administration (FAA) on April 8. The document then made its way through the U.S. State Department, the U.S. Department of Defense, NASA, the National Oceanic and Atmospheric Administration, and the Federal Communications Commission, Richards said.

View the full article, HERE.

Monday, March 21, 2016

Desolate magnificence -The Space Review

LRO images on display at the Smithsonian Air & Space Museum [Dwayne Day/The Space Review].
Dwayne Day

Right now Washington, DC’s museums are filled with the noise of hormonal teenagers on their spring break trips to the nation’s capital. They run around aimlessly, oblivious to their surroundings, or sprawl on the dirty carpet absorbed in their own little worlds. Later, in May, the senior class trips will show up, and those older students are a little less noisy, a little more focused, but they too will probably not be all that interested in the actual museums, even if they take their noses out of their cellphones for more than a second or two. But just maybe, perhaps, one or two of them may accidentally wander into one of the National Air and Space Museum’s new exhibits and they might quiet down for a moment and see something both familiar and alien.

The exhibit is titled “A New Moon Rises” and it is a display of large format photographs from NASA’s Lunar Reconnaissance Orbiter featuring the Moon in all its panchromatic glory. You could look at most of these photos on your computer screen, but seeing them enlarged and displayed on a museum wall like works of art is an entirely different experience.

The Lunar Reconnaissance Orbiter, or LRO, was launched in 2009 and has been chugging away ever since. If nothing breaks, in four or five years the spacecraft will probably run out of fuel and, because the Moon’s gravity field is uneven, it will ultimately fall and silently crash into the surface after more than a decade in orbit.

- Read the full article online, in the latest issue of The Space Review, HERE.

Tuesday, February 16, 2016

Stunning pictures of the Moon over London skyline

Photographer James Burns has spent the past year capturing various lunar spectacles in London. Some of the result is part of thirteen images posted in a London Evening Standard slideshow, HERE [james Burns@London_Rooftops].
Liz Connor and Gareth Richman

From September’s supermoon rising to the magnificent lunar eclipse, photographer James Burns captures some of the most breathtaking states of the moon over London.

His Lunar London project emerged after various evenings of photographing the capital’s skyline led to a string of chance encounters with the moon.

“I had a growing fascination with how I could capture it in the same way I had been the shooting the rising and setting sun for some years”, James told the Evening Standard.

“2015 was a lucky year for moongazing in London. Despite cloud cover across most of Europe, September's supermoon lunar eclipse was visible in perfectly clear skies over London and was an otherworldly joy to behold.”

Read the full feature and view the Gallery HERE.

Monday, February 15, 2016

Plans for Moon resort in California

Artist conception of the proposed Moon USA resort and entertainment complex in Coachella Valley near Indio,  California.Renderings courtesy of Moon World Resorts, Inc. feature at laist.com.
Danny Jensen
laist.com

Dust off your moon boots because a Canadian developer is aiming to build a $4 billion, five-star lunar resort, known as Moon USA, in the city of Coachella, just down the road from where the music fest is held in Indio. That kind of awesomeness is obviously what has been missing from all of our lives.

View details and artist renderings HERE.

Friday, February 12, 2016

Israeli GLXP team 'all in' for Reiner Gamma

Israeli President Reuven Rivlinlooks on as SpaceIL's GLXP lunar lander prototype is unveiled [Alon Hadar].
Abigail Klein Leichman
New Jersey Jewish Standard

Why is a team from the tiniest country in the Middle East joining an international race to the moon?

It’s not just the promise of a Google Lunar XPRIZE of $20 million to the first team (and $5 million to the second team) that lands an unmanned spacecraft on the moon by December 31, 2017, and then moves it 500 meters across the lunar surface as it sends high-definition images and videos back to earth.

The Israelis’ participation has much to do with a cultural passion to accomplish the seemingly impossible. It also is fueled by a desire to make history, inspire Jewish pride, and encourage more young people to pursue careers that will sustain Israel’s leading position in the high-tech world.

Still image from YouTube video detailing the SpaceIL ballistics. the Israeli team intends to utilize graduated orbital phases to attain increasing apogee in graduated stages, similar to the polar orbit method previously employed by both ESA and the ISRO. The team has chosen the Reiner Gamma swirl and magnetic anomaly north of the lunar equator in Oceanua Procellarum as its eventual landing site.
“Only global superpowers with billion-dollar space programs — the United States, Russia, and China — have soft-landed a rover on the surface of the moon,” said SpaceIL’s CEO, Dr. Eran Privman, last October, when SpaceIL became the first Google Lunar XPRIZE (GLXP) team to sign a verified launch contract for a privately funded mission to the moon.

On February 17, Yonatan Winetraub — one of three young Israeli engineers who founded the nonprofit organization SpaceIL in 2010 to enter the GLXP competition — will speak about the ambitious project at Rutgers University in New Brunswick.

Read the full and unusually detailed write-up HERE.

Thursday, February 11, 2016

Lunar Survival game concept 'revealed'


Hat Tip to gamershell.com for news of "Lunar Survival," a "first-person survival adventure game with horror elements," developers frankly admit is barely 'a work in progress.'

"The gameplay is designed as a combination of survival-action, map quests, realistic Apollo mission technologies and various Moon mysteries. Players will need to take in consideration of the different technical aspects to pass missions, such as the amount of oxygen, electricity, stamina and the space suit temperature. Players will be able to repair, fix and build different mechanisms and upgrade their suit which will help them to spend more time on missions without coming back to the Lunar Space Module to recover."

Interesting how the concept Surveyor artifact features artfully edged and updated landing pods.

Perhaps someone in the community could help the developers out.

They might begin with the amazingly stubborn 'dark side and light side of the Moon' fallacy, before these guys embarrass themselves repeating what every Pink Floyd fan has accepted as false since 1973.

Some will laugh at the early stage vaporware feel to this concept, which seems to borrow heavily from Apollo 18 (2011),

Is it possible they totally missed that movie? Of course it is.

Still this game's development is, at least, claimed to be 'in progress' and is, therefore, making a better pace than Congress, for example

Sadly, none of this raises any hope that search results, using YouTube especially, will soon start to separate science from urban legend for those using criteria that includes 'NASA' or 'Apollo.'

Saturday, February 6, 2016

Edgar Mitchell (1930-2016)

Edgar Mitchell, sixth human to visit the lunar surface, takes a live panorama of the close horizon using the first color television camera successfully operated on the Moon; at Fra Mauro, south of Copernicus, February 1971. Photograph by Apollo 14 commander Alan Shepard [NASA/JSC].
Astronaut Edgar Mitchell, lunar module pilot on Apollo 14, passed away Thursday in West Palm Beach, Florida,  and on the eve of the 45th anniversary of his lunar expedition in 1971.

Mitchell joined Apollo 14 commander Alan Shephard, Jr., the first American in space, in the lunar module Antares, which touched down February 5, 1971, in the Fra Mauro highlands. Shepard and Mitchell were assigned to traverse the lunar surface to deploy scientific instruments and perform a communications test on the surface, as well as photograph the lunar surface and any deep space phenomena. It was Mitchell’s only spaceflight.

Mitchell and Shephard set mission records for the time of the longest distance traversed on the lunar surface; the largest payload returned from lunar surface; and the longest lunar stay time (33 hours). They were also the first to transmit color TV from the lunar surface. Mitchell helped collect 94 pounds of lunar rock and soil samples that were distributed across 187 scientific teams in the United States and 14 other countries for analysis.

Read the full NASA release HERE.

Tuesday, January 19, 2016

Re-entry debris traced to Lunar Prospector in '98

The highly-economical science probe Lunar Prospector mated to the payload assist module prior to launch in 1998. The  man-sized tran-lunar ejection module (Bottom)  may have made a fiery return to Earth, last year [NASA].
Traci Watson
NATURE

The piece of space junk that made a fiery plunge into the Indian Ocean two months ago was most likely the remains of a rocket motor that propelled a NASA probe to the Moon in 1998, researchers studying the event have concluded.

The junk’s identity is by no means certain, but the “leading candidate” is the translunar injection module of Lunar Prospector, says Paul Chodas, an asteroid tracker at the CalTech/Jet Propulsion Laboratory in Pasadena, California. The module nudged the probe out of Earth orbit and then detached from the main spacecraft, which orbited the Moon for 19 months before it was deliberately slammed into the lunar south pole in July 1999.

Speculation about the source of the debris, known as WT1190F, ran rampant even before it plummeted through the atmosphere on 13 November. The only artificial object to make an uncontrolled re-entry at a precisely predicted place and moment, it presented a unique chance to witness such an event in real time. Researchers took advantage of the opportunity, monitoring the debris from a chartered jet as well as from ground-based observatories.

Catch the full article HERE.

Thorium concentrations in ppm, among the many elemental maps gather from data collected during the pioneering and economy-driven Lunar Prospector mission over its eighteen months in lunar orbit in 1998 and 1999 [Spudis/NASA].

After ISS, lunar 'village' is next -Woerner

For ESA's 3D-printed lunar base concept, Foster+Partners devised a weight-bearing ‘catenary’ dome design with a cellular structured wall to shield against micrometeoroids and space radiation, incorporating a pressurised inflatable to shelter astronauts [ESA/Foster & Partners].
Katherine Derla
TECH TIMES

European Space Agency's head Jan Woerner released the vision outline for the Moon Village, which could replace the International Space Station as early as 2030. The lunar village will be composed of structures created by 3D printers and robots using Moon dusts as raw materials.

Woerner became the ESA head in July 2015 and made the Moon mission the space agency's central project. Woerner added that this lunar project is a crucial step towards the future flight to Mars.

"I looked into the requirements I see for a project after ISS. As of today, I see the Moon Village as the ideal successor of the International Space Station for [space] exploration," said Woerner.

The Moon Village project could be a collaboration of several nations and space exploration groups including Russia, China, NASA and ESA. Experts around the world could contribute advanced technology, knowledge and even manpower (astronauts) for the Mars mission preparations. The same can be done for the ongoing biology and physics explorations that are currently being conducted onboard the ISS.

In 2014, the U.S. announced they intend to keep the ISS in operation until 2024, which pushed back the station's retirement by at least four years. Several European nations raised concerns over the extended operation's perceived costs, challenging if the extension would be worthwhile. On the other hand, Russia is considering the option of building its own space station.

Read the full-article HERE.

Wednesday, October 14, 2015

APOD: A Gegenschein Lunar Eclipse

Lunar Eclipse through elusive Gegenschein light from Namibia [Petr Horálek/NASA/APOD].
Explanation: Is there anything interesting to see in the direction opposite the Sun? One night last month, there were quite a few things. First, the red-glowing orb on the lower right of the original image is the full moon, darkened and reddened because it has entered Earth's shadow. Beyond Earth's cone of darkness are backscattering dust particles orbiting the Sun that standout with a diffuse glow called the gegenschein, visible as a faint band rising from the central horizon and passing behind the Moon. A nearly horizontal stripe of green airglow is also discernable just above the horizon, partly blocked by blowing orange sand. 

View of Petr Horálek's original "dark Namibian eclipse in the Gegenschein," featured NASA ASTRONOMY PICTURE of the DAY," October 14, 2015 [NASA/APOD/Petr Horálek].
Visible in the distant sky as the blue dot near the top of the image is the star Sirius, while the central band of our Milky Way galaxy arches up on the image left and down again on the right. 

The fuzzy light patches just left of center are the Large and Small Magellanic Clouds. Red emission nebulas too numerous to mention are scattered about the sky, but are labelled in a companion annotated image. In the image foreground is the desolate Deadvlei region of the Namib-Naukluft National Park in Namibia, featuring the astrophotographer himself surveying a land and sky so amazing that he described it as one of the top experiences of his life.
Context, by  Judy Schmidt.